Publications
AI in Brain Disease Modeling
- Zhang, L., Na, S., Liu, T., Zhu, D. and Huang, J. (2023). Multimodal Deep Fusion in Hyperbolic Space for Mild Cognitive Impairment Study. In the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). (Early Accepted, Rate: 13.6%; NIH-MICCAI STudent-Author Registration (STAR) Award; Oral)
- Zhang, L., Yu, X., Lyu, Y., Liu, T. and Zhu, D. (2023). Representative Functional Connectivity Learning for Multiple Clinical Groups in Alzheimer’s Disease. In IEEE 20th International Symposium on Biomedical Imaging (ISBI).
- Zhang, L. , Wang, L., Liu, T., and Zhu, D. (2023). Disease2Vec: Representing Alzheimer’s Progression via Disease Embedding Tree. Pharmacological Research. (IF: 9.3)
- Zhang, L.☨, Qu, J., Ma, H., Chen, T., Liu, T., and Zhu, D. (2023). Exploring Alzheimer’s Disease: A Comprehensive Brain Connectome-Based Survey. Psychoradiology. ☨ Corresponding Author.
- Zhang, L., Wang, L., Gao, J., Risacher, S.L., Yan, J., Li, G., Liu, T. and Zhu, D. (2021). Deep fusion of brain structure-function in mild cognitive impairment. Medical Image Analysis (MedIA). (IF: 13.828)
- Zhang, L., Wang, L. and Zhu, D., (2020). Jointly Analyzing Alzheimer's Disease Related Structure-Function Using Deep Cross-Model Attention Network. In IEEE 17th International Symposium on Biomedical Imaging (ISBI). (Oral)
- Zhang, L., Zaman, A., Wang, L., Yan, J. and Zhu, D. (2019). A Cascaded Multi-Modality Analysis in Mild Cognitive Impairment. In International Workshop on Machine Learning in Medical Imaging (MLMI).
- Yu, X., Scheel, N., Zhang, L., Zhu, D.C., Zhang, R. and Zhu, D., (2021). Free water in T2 FLAIR white matter hyperintensity lesions. Alzheimer's \& Dementia.
- Wang, L., Zhang, L., and Zhu, D., (2020). Learning Latent Structure Over Deep Fusion Model of Mild Cognitive Impairment. In IEEE 17th International Symposium on Biomedical Imaging (ISBI).
- Wang, L., Zhang, L., and Zhu, D., (2019). Accessing Latent Connectome of Mild Cognitive Impairment via Discriminant Structure Learning. In IEEE 16th International Symposium on Biomedical Imaging (ISBI).
AI in Brain Fundamental Organization Principles
- Zhang, L., Wu, Z., Yu, X., Lyu, Y., Dai, H., Zhao, L., Wang, L., Li, G., Wang, X., Liu, T.*, and Zhu, D.* (2023). Learning Lifespan Brain Anatomical Correspondence via Cortical Developmental Continuity Transfer. IEEE Transactions on Neural Networks and Learning Systems (TNNLS). (IF: 14.255) * Co-corresponding authors. (Under Review)
- Zhang, L., Wang, L. and Zhu, D. (2022). Predicting brain structural network using functional connectivity. Medical Image Analysis (MedIA). (IF: 13.828)
- Zhang, L., Zhao, L., Liu, D., Wu, Z., Wang, X., Liu, T. and Zhu, D. (2022). Cortex2vector: Anatomical Embedding of Cortical Folding Patterns. Cerebral Cortex. (IF: 5.998)
- Zhang, L., Wang, L. and Zhu, D., (2020). Recovering brain structural connectivity from functional connectivity via multi-GCN based generative adversarial network. In the 23rd International Conference on Medical mage Computing and Computer-Assisted Intervention (MICCAI). (Early Accepted, Rate: 13.3%; Prestigious Young Scientist Award (Best Paper Award), Rate: 4/1809 =0.2%; Oral)
- Zhang, S., Zhang, T., He, Z., Li, X., Zhang, L., Zhu, D., Jiang, X., Liu, T., Han, J. and Guo, L., (2023). Gyral peaks and patterns in human brains. Cerebral Cortex. (IF: 5.998)
- Gao, X., Zhang, X., Zhang, L., Xu, X. and Zhu, D. (2023). Predicting Diverse Functional Connectivity from Structural Connectivity Based on Multi-contexts Discriminator GAN. In the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). (Early Accepted, Rate: 13.3%)
- Yu, X., Hu, D., Zhang, L., Huang, Y., Wu, Z., Liu, T., Wang, L., Lin, W., Zhu, D., and Li. G. (2022). Longitudinal Infant Functional Connectivity Prediction via Conditional Intensive Triplet Network. In the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI).
- Zaman, A., Zhang, L., Yan, J. and Zhu, D. (2019). Multi-modal image prediction via spatial hybrid U-Net. In the Multiscale Multimodal Medical Imaging (MMMI). ( Best Oral Paper Award, Rate: 10%; Oral)
Brain Inspired AI
- Zhao, L.*, Zhang, L.*, Wu, Z., Chen, Y., Dai, H., Yu, X., Liu, Z., Zhang, T., Hu, X., Jiang, X. and Li, X. (2023). When brain-inspired ai meets agi. Meta-Radiology. * co-first authors
- Yu, X.*, Zhang, L.*, Dai, H., Zhao, L., Lyu, Y., Liu, T. and Zhu, D., (2023). Core-Periphery Principle Guided Redesign of Self-Attention in Transformers. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). * co-first authors. (IF: 24.314). (Under Review)
- Yu, X., Zhang, L., Zhu, D. and Liu, T. (2023). Robust Core-Periphery Constrained Transformer for Domain Adaptation. arXiv preprint arXiv:2308.13515.
- Chen, Y., Xiao, Z., Du, Y., Zhao, L., Zhang, L., Wu, Z., Liu, D., Zhu, D., Zhang, T., Hu, X., Liu, T., and Jiang, X., (2023). A Unified and Biologically-Plausible Relational Graph Representation of Vision Transformers. IEEE Transactions on Neural Networks and Learning Systems (TNNLS).(IF: 14.255)
- Zhao, L., Dai, H., Wu, Z., Xiao, Z., Zhang, L., Liu, D.W., Hu, X., Jiang, X., Li, S., Zhu, D. and Liu, T. (2023). Coupling visual semantics of artificial neural networks and human brain function via synchronized activations. IEEE Transactions on Cognitive and Developmental Systems (TCDS).(IF: 4.546)
- Huang, H., Zhao, L., Hu, X., Dai, H., Zhang, L.*, Zhu, D. and Liu, T. (2023). BI AVAN: Brain inspired adversarial visual attention network. IEEE Transaction on Multimedia.(IF: 8.182) (Under Review)
Large Foundation Model/Large Language Model
- Wu, Z.*, Zhang, L.*, Cao, C.*, Yu, X., Dai, H., Ma, C., Liu, Z., Zhao, L., Li, G., Liu, W. and Li, Q., (2023). Exploring the trade-offs: Unified large language models vs local fine-tuned models for highly-specific radiology nli task. arXiv preprint arXiv:2304.09138. * co-first authors. (Citation: 32)
- Li, X.*, Zhao, L.*, Zhang, L.*, Wu, Z., Liu, Z., X. S., Yuan, Y., Liu, J., Li, G., Zhu, D., Yan, P., Li, Q., and Liu, W. (2023). Artificial General Intelligence for Medical Imaging. arXiv preprint arXiv:2306.05480. * co-first authors. (Citation: 20)
- Liu, Z.*, Yu, X.*, Zhang, L.*, Wu, Z., Cao, C., Dai, H., Zhao, L., Liu, W., Shen, D., Li, Q. and Liu, T. (2023). Deid-gpt: Zero-shot medical text de-identification by gpt-4. arXiv preprint arXiv:2303.11032. * co-first authors. (Citation: 98)
- Liu, Z., Zhang, L., Wu, Z., Yu, X., Cao, C., Dai, H., Liu, N., Liu, J., Liu, W., Li, Q. and Shen, D. (2023). Surviving ChatGPT in Healthcare. Frontiers in Radiology.
- Xiao, Z., Chen, Y., Yao, J., Zhang, L., Wu, Z., Yu, X., Pan, Y., Zhao, L., Ma, C., Liu, X. and Liu, W. (2023). Instruction-vit: Multi-modal prompts for instruction learning in vit. Information Fusion. ((IF: 18.6))
- Zhang, L., Liu, Z., Zhang, L., Wu, Z., Yu, X., Holmes, J., Feng, H., Dai, H., Li, X., Li, Q. and Zhu, D. (2023). Segment Anything Model (SAM) for Radiation Oncology. arXiv preprint arXiv:2306.11730. (Citation: 18)
- Liu, Z., Zhong, T., Li, Y., Zhang, Y., Pan, Y., Zhao, Z., Dong, P., Cao, C., Liu, Y., Shu, P., Wei, Y., Wu, Z., Ma, C., Wang, J., Wang, S., Zhou, M., Jiang, Z., Li, C., Holmes, J., Xu, S., Zhang, L., Dai, H., Zhang, K., Zhao, L., Chen, Y., Liu, X., Wang, P., Yan, P., Liu, J., Ge, B., Sun, L., Zhu, D., Li, X., Liu, W., Cai, X., Hu, X., Jiang, X., Zhang, S., Zhang, X., Zhang, T., Zhao, S., Li, Q., Zhu, H., Shen, D., and Liu, T. (2023). Evaluating large language models for radiology natural language processing. arXiv preprint arXiv:2307.13693. (Citation: 11)
- Liu, C., Liu, Z., Holmes, J., Zhang, L., Zhang, L., Ding, Y., Shu, P., Wu, Z., Dai, H., Li, Y. and Shen, D. (2023). Artificial General Intelligence for Radiation Oncology. arXiv preprint arXiv:2309.02590.(Citation: 9)
|